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SOME REMARKS ON THE RELATIVISTIC CONCEPTS 

OF VELOCITIES AND ACCE~ERAT~ONS~ 

L.I. SEDOV 

The current situation in the kinematics of four-dimensional Riemannian 
spaces has inspired the enunciation of the following comments and the 
generalization of the local Coriolis Theorem to the case of deformed 
media, in the framework of both the special and general theory of 
relativity. 

1. Coozviinates, frames of reference and world Lines. The basic method in theoretical 
research is invariably associated with the use of coordinate systems: each point of a four- 
dimensional space is assigned four numbers (arithmetization), endowed with various postulated 
geometric properties, usually along with certain other formulated properties of a general 
nature. These tools make it possible to use the methods and operations developed in mathemat- 
ical analysis. 

Coordinate systems xi or 5' (i = 1,2,3,4) in a given fixed space are generally associ- 
ated with functions of the type 

2% =r'(g") and Ek s gk(si); k, i = 1,2,3,4 (1.1) 

At a given set of points in the space one can consider the coordinate lines, declaring 
one of the coordinates, say, in systems 8' and -z', 5' and XL, to be timelike and the co- 
ordinates '5" and p (a = 1, 2,3) to be fully equivalent spacelike variables. 

In applications, considering the same set of points, one can call one of the coordinate 
systems, say x{, the observer's system; the other system Er, with variables Ea = const and 
5'=7, is considered as a comoving Lagrangian frame in which the constant numerical values 
EU = const name the points forming the world lines L, on which the successive positions of 
the individual points thus specified are determined by the timelike coordinate 5" =r. 

By the general formula (l.l), every point with fixed values of the three coordinates p 
determines laws of motion of the individual points, represented by a family of world lines L. 
Similarly, one can introduce families of world lines in Lagrangian variables zh and ti = con&. 
for a law of motion - in the system of functions g'=Ip"(.z", z). On a family of world lines 
for L, which are either given or to be determined for the particular continuum being studied, 
one considers vector elements dr of arbitrary families of world lines L; in Riemannian spaces 
one can put Idr 1 = d.3 and, knowing the functions (l.l), introduce an invariant metric axio- 
matically by the invariant formulae 

dsa = ~,jd&& = g&d@ (W 

Here &, and gii are the components of the metric tensor, which depend only on the 
coordinates x' or 5* and may be specified initially in either coordinate system; once that 
has been done they are uniquely defined in the other coordinate system on the basis of the 
functions (l.l), and define a corresponding Riemannian space. 

2. Concepts of vetocities. Model physical characteristics of moving points in four- 
dimensional spaces are generally introduced as individualized points, through the use of 
Lagrangian coordinates. In this way one obtains local and global concepts of comoving world 
lines L, proper time z along L, arc length s along L and four-dimensional velocity u = 
dsl(dx), which is directed along the tangent to L. 

The fundamental geometric constant in the four-dimensional pseudo-Riemannian spaces of 
the special and general theory of relativity is a dimensional scalar constant, usually 
denoted by C (the three-dimensional velocity of light in a vacuum). In a special system of 
measurement units one may legitimately assume that c =l. If ds>o on a world line L, 
one assumes furthermore that dz>O, and therefore, if c = 1, 
d-s/& = 1 in the comoving coordinates. 

one has ds =dr and 1” j = 
If the comoving world line is a null line, then 

&=&==O on L. Null comoving world lines correspond, in particular, to the motion of 
photons in a vacuum at a three-dimensional velocity v==c in any local or global reference 
frame. 

In the general case the corresponding three-dimensional velocity vector is defined by 
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the formula v = dlldz, where the infinitesimal vector dl is the "space" component of the 
vector ds appearing in the definition of the four-dimensional velocity vector II = ClsldT at 
the points of the world line L, directed along the tangent to L. 

3. UniversaZ carwnicat form of the metric in l&pan&an coordinates. In the general case 
of non-null world lines L in any Riema~nian space, in both special and general relativity, 
one can find a global transformation of the type (1.1) from coordinates x' to Lagrangian 
coordinates El, E2. Es. 7, in which any metric takes the canonical form 

dss3 = c2dzz -/- %cg~:,,d~ad% + gWadE”d@ (2.l) 

In other words, one can make the component &, (E", 4 equal to c2 or unity, thus intro- 
ducing the variable coordinate z in the entire space: at each point of the four-dimensional 
space one then specifies only nine components &(E;R,%) and g,b (P, T), of the metric, and 
it is the choice of these components that determines the pseudo-Riemannian space. One example 
of such a transformation is 

After the transformation (3.1) we get 

The value of the variable coordinate z = gPq which is defined at all points of the 
space, in the canonical form (3.1) is related to the choice of the family of transformations 
(l.l), which, as we have seen, represent the laws of motion of individual points %a = con& 
in Lagrangian form expressed as (1.1) with Lagrangian coordinates P* T‘. In this way, for 
any family of world lines L, Once the canonical foxm (3.1) of the metric has been chosen one 
obtains the concept of global time corresponding to the family L. 

It is easy to see that the canonical form of the metric in the comoving Lagrangian co- 

ordinates ga,~iis preserved under transformation (1.11 of the special type 

t' = z -I- 21, (ga)andE'" = ia (Ee) (3.3) 

On such lines L and L’ we have d%' -=:dz for 5" = const and ra = cons& respectively; 
moreover, g*,’ = a, = 3 and the line L is transforhted into L’. The components g,, and 

&J of the metric tensor and the tetrads of basis vectors a, and sit remain invariant. 
Thus, the metric of a pseudo-Riemannian space may always be reduced globally to the form 

(3.1), where g" and z denote the four coordinates which, since the metric is pseudo- 
Riemannian, are essentially non-equivalent, contrary to what is currently claimed in the 
literature. 

For an axbitrary given family of world lines, r is one of four global coordinates, the 
algebraic meaning of which is directly bound up with the form of the space metric. 

Only when considering families L of coordinate world lines on which ga = con&, so that 
also ds2 = cpdSl can one assign the variable coordinate +C the sense of proper time on such 
generally arbitrary coordinate world lines with equations g= = eons+", a = 1,2,3; in 
particular, these lines may be geodesics. 

In the same fixed space one can consider metrics of type 13.1) for different families L 
and accordingly for different global times z. 

If L, and L, are two families which can be derived from one another by a coordinate 
transformation 13.3), then at corresponding points one has 

da, = d7, 

If the transformation is made from the observer's family L, with global time ?s to a 
family L, with proper global time z,, then at points M of intersection of L5, and L, one 

obtains 
do, # dz, 

In the general case, considering the metric at such points M, and assuming that the 
tetrads are non-holonomieally defined, one can Write 
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where dsI and ds, correspond to a fixed space but to different families L ana corr@Wond- 
ing d7. 

If dt, is the increment of proper time on &, then v1 =df,ld’$ =O, but on L2 we have 

i'dl,ldz, = v,lc # 0. In dimensional form we obtain 

dz, = &C2 7/l - 1 v, j %Z 

Here dz, is the proper time element on the world line L, and do is the corresponding 

time element on the observer's line Lp. If the subscripts 1 and 2 are interchanged, the 

observer's time z2 may be reckoned to be proper, while the time T1' on L, becomes the 

time of an observer on L,. 
~~~ a fixed space and a corresponding fixed general' situation, depending on different 

equally legitimate points of view, certain invariant inequalities hold both theoretically and 
experimentally: either d%l<dz, or &, < dz,' on the fixed world lines L, and t,, and 
these inequalities remain valid irrespective of the direction of the three-dimensional vel- 
ocities v1 or vs. 

hot infrequently, certain timelike coordinates in the general formula (1.2) for the 
metric are denoted by the letter t and treated as time; this interpretation is possible if 
the metric (1.2) can be reduced, by a suitable coordinate transformation, to the form (3.1) 
and one can identify z and t. It is well-known, for example, that in the same space but 
different cOOrdinates,the metric of the Schwarzschildfield or that of the Lemaitre field of 
the same Riemannian space can be written as 

bz = (1 - r#/r) ,+&z - (1 - r,/r)%W - r2dQ = @d+ - (r&) dR2 - r%lQ 

where 

Clearly, both metrics determine the same system of geodesics. In that case, for certain 
geodesics - planetary orbits - one can fix r == const; then, in particular, we obtain 

T = kt, k = (1 - r,/r)'/* == const 

On the other hand, apart from the planetary orbits there are geodesics that pass by the 
horizon of a black hole or intersect a black hole. Any such geodesic may be viewed as the 
world line of a small particle in the Schwarzschild or Lemaitre metric, with the correspond- 
ing coordinate T. The variable t cannot be interpreted as time along a geodesic which inter- 
sects the horizon of a black hole. A simple analysis reveals that in the Lemaitre metric the 
proper time ? on a geodesic intersecting the horizon of a black hole is such that rz - z0 
is finite, where z0 is the recorded time at some point on the geodesic and r1 is the time 
at the point of intersection of the geodesic with the horizon of the black hole. 

The argument proposed here deepens our understanding of the time concept, and at the same 
time brings out the error in some monograph and textbook authors' assertions about the time 
necessary for a particle to fall into a black hole*. (*It may be useful to observe that the 
envelope systems of geodesic world lines cannot be viewed as geodesic world lines of individu- 
ally defined points.) 

4. Tetrads of basis vectors. Once coordinates and basis vectors have been introduced at 
each point of the space, one obtains invariant equalities for any infinitesimal vector dr 
with contravariant components dz', dy’ or dr, in any coordinate system: 

dr = dxb,) = dy’a,” = d& (4.9 

with sunmation over the index i = 1,2,3,4. In this situation, in the comoving metric (3.1) 
along L, when dE= =O, we have 

dr = ds = cdra, 
(4.2) 

and consequently, along L, it follows from (3.1) that dr = ds, and if c = 1 
1 ds ] = dz. 

we have 1 dr 1 = 

It follows from formulae (4.11, 
on L by (3.1) g,, = 1 when c=2. 

(1.1) and (3.1) that gil (z') = ai'aj', gir"@) = ai"aj" and 
In addition, the formulae for the tensor transformation 

of the basis vectorsyield transformation formulae for the components gif of the metric tensor 
in a fixed Riemannian space. 
Riemmanian space, 

The specification of basis tetrads at each point . of a 
in different global coordinate systems, determines a local metric, In a 

fixed Riemannian space the field of basis vectors is not generally arbitrary, since, for 
example, the components of the metric tensor of a Riemannian space form differential invariants 
which are independent of the choice of coordinate system. Nevertheless, in general Riemannian 
spaces one can introduce any characteristics along world lines L, 
non-holonomic local basis tetrads at the points of the space, 

by using special systems of 

Below we shall show that different observers,introducing different non-bolonomic tetrads 
along a world line La may accordingly define different acceleration vectors along L. 
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5. Possibte specif’icat&ons of arbitrw systems of non-hotonomic tetrads. Let US 

assume that in any space, in an arbitrary basis a, a vector A is defined at ever* point 
relative to a holonomic or non-holonomic system of bases ai. Consider linear coordinate 
transformations relative to that system at the points of the space: the transformation from 
X" to y', with coefficients Z?? ==//~.~'.(l,and the inverse transformation P =\lb,i,jl, from yL 

to xi, so that sX..,b"l = ejk; the coefficients Q.~~* may be arbitrary functions of p=, ‘t 

and possibly other variables. Since A and a, are all vectors, we can write 

A = A’az = A’a,hbi’a, = A’ks ’ k 
In this connection, it is obvious that, if the transformations are non-degenerate, one 

can always assume that at each point of the space suitable linear algebraic transformations 
will replace the non-holonomic bases by orthonormal bases e, and e" with e,e' = 1 and 

&j = 0 for i#j. This is certainly the case if the original components of the basis 
vectors are contravariant and the components of the vector A are covariant. 

At the same time, it is also clear that if the vector A and bases ei depend not only 
on the coordinates p but also on scalar variables u, then the derivatives &&lap are 
vectors and the derivatives a++ are also vectors. 

The proper global time 7 in the metric (3.1), for a family of world lines L in the 
framework of the metric (3.1) and transformations (1.11, forms a scalar field for 7. while 
the three components g,,(ga,~) form a vector field; together these fields characterize the 
Riemannian space and the family of lines L. These facts together with the theory of acceler- 
ations proposed below, represent an important mechanical interpretation of the properties of 
Riemannian spaces as represented by the canonical form of the metric (3.1) in Lagrangian 
variables. 

Grthonormal bases, as they vary in space and along the world lines L, are convenient 
representations of invariant properties and characteristics of observers and enable one to 
gain a clearer idea of the meaning of inertial observers; the latter may be defined at the 
points of L axiomatically, by stipulating local conditions ai := const or e< = const, or, 
respectively, a" = const, assumed to hold simultaneously. 

It follows from these locally possible definitions that the corresponding local inertial 
tetrads in curved Riemannian spaces cannot be holonomic, since the Riemann curvature tensor 
need not vanish. In the latter case it is impossibleto introduceglobal inertial coordinates 
similar to Cartesian coordinates. Global inertial coordinates can be introduced only in 
Euclidean and Minkowski spaces. 

6. Definition of the correspond+lg four-d~nsionaZ velocity and meeZemtion vectors. 
In the metric (3.1) the components of the vectors u satisfy the following formulae along 

comoving lines L: 
~4 = 1, ua = 0 and u4 = 1, Z& .= g,, (p, 'r) W) 

and in bases 3' on the same lines L: 

U=8.,‘3*fgaq(p.T)3a (6.2) 

Formula (6.2) holds in different four-dimensional Riemannian spaces, in which the field 
Of four-dimensional velocities u defined for u = 3* and the corresponding world lines L 
maY form different families with a superimposed metric of type (3,l) in Lagrangian coordinates 
I", a. 

In this formulation of the problem, the partial derivative with respect to the proper 
global time 

dttiaz = arei 6.3) 

yields the relative acceleration vector along the world lines L. 
Since u = a* is a unit vector directed along the tangent to L, it follows that the 

acceleration vector a,,! is always perpendicular to the unit basis a4 =u. 
By formula (6.2), the relative acceleration vectors can be expressed in terms of the 

generally variable components of the metric gL4(ga,5) and the contravariant basis vectors 

gk (P, z), considered at points of world lines L, whether the latter are given or subject to 
determination. 

The functions and world lines in (6.2) are related to one another, but they may be dif- 
ferently defined in any fixed Riemannian space. Accordingly, depending on 9% and ak one 
may obtain different proper global timelike variables z and aCCeleratiOnS a& for dif- 
ferent families of world lines L. 

The reduction of the metric to the form (3.1) is obviously aimed precisely at ensuring 
the existence of the proper global time z occurring in the definition of velocities and 
accelerations in the special and general theories of relativity. 

Moreover, the value of the vector component Baa in (3.1) is extremely important: it 



151 

clarifies the physical meaning of suspected components of the four-dimensional vector u (r), 
which has covariant components &, (P> r) = % relative to the contravariant bases in the 

tetrads a' in fixed pseudo-R~emannian spaces - these bases are generally variable along the 

world lines L. 
By virtue of (6.1) and (6.2), in the comoving coordinates it may be necessary, at each 

point of the world line L, to use the selected bases a4 = u and variables ghr(E=,rf =ug @,r) 
locally as envelope, using different tetrad bases a%, iprovided that Eq.(6.2) is satisfied. 

Differentiating (6.2) with respect to z along L in accordance with thaaccount in the 
previous section, we obtain the following formulae in the holonomic basis 5% and the non- 

holonomic orthonormal basis e' 

ek (6.4) 

It is easy to see that in a metric of type (3.1) the following invariant relations hold 
at each point of a given world line L: 

1) gpp = go4 = 1, where by construction a4 = ek = 3p + ga43a, provided that 83,/k+ d o%h; 

2) in veiw of the fixed nature of the Reimannian space, 

aslijaz = -j$i and9ek/&= --~~~6" 

and we therefore obtain 

3) &&k/& = gk,dek/& =O. 

From (6.4) we obtain the following formula for the acceleration: 

&w/8~P- ag~~~ea 

The acceleration is perpendicular to the vector as as required, Since eq = e" and 
the vectors ea are perpendicular to ~4 by orthonormality. 

Thus, in the comoving Lagrangian system,. the definition of the proper coordinate system 
on any line L, corresponding to the equations 5" = clXlst, implies the following formula for 
the relative acceleration: 

aXei = d~~/~3~ for aa generally variable. (6.5) 

We emphasize that in the general case the following relations bold along L in the co- 
moving system: 

ds2 = c%+, u = 3* and gx4 = 3k34 
(6.6) 

which may generally be postulated in advance*. (*Obviously, any families L, with a suitably 
superimposed metric at g,,fgaj, may be considered as a family of geodesics; to that end one 
need only take the bases a@ and components !&l constant along L-1 

In connection with Eq.(6.5), it is clear that the acceleration a,( on L is defined 

by specifying the values of the components gw, which in turn are determined by specifying 
the basis tetrads 3, and gk at the points of the world lines L. 

In follows from (6.5) that the accleration areI depends essentially on the basis vectors 

in the obraerver's tetrads sk or Sk, which may be variable along L and are expressed 
holonomically or non-holonomically in terms of the components g,,. 

If all the bases + and 3' are constant, and therefore independent of the time a, 
then the components ga, are also constant and therefore the acceleration is zero. In that 
case the corresponding lines L in (6.5) and (6.8) are geodesics. 

ar.4 = 3abs = 0 (6.7) 

If g,,= 1 in the metric (3.1), then g,, are non-zero and the usually non-holonomically 
defined components g, are generally variable only through =4 (4 when the bases s, are 
constant. 

In these cases, the corresponding acceleration on the world line L is said to be absolute. 
For absolute accelerations on a world line one can write 

In the general case one can assume that the bases 3ar3a or es and e, form a non- 
holonomic orthonormal system of tetrads on L, making it possible to interpret the orthonormal 
system of tetrad vectors e, and their derivatives with respect to- z as characteristics 
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of the observer's tetrads, resulting from his acceleration and three-dimensional tensors of 
rate of strain and rotation. 

If the bases aa or, respectively, 3a in the local tetrads are stipulated by definition 
to be constant with respect to time r1 such model tetrads are often introduced, and the 
corresponding observers with constant tetrad bases are said to be inertial. For inertial 
tetrads in comoving coordinates as in (6.2)‘ the acceleration vector of a point on a line L 
is defined by formula (6.8), as in the case of an inertial observer. Inertial tetrads may be 
introduced axiomatically at each point of space, but the definition is unique only up to a 
Lorentz transformation in special and general relativity; this has no effect on the magnitudes 
of the acceleration vector. 

Accelerations in relative inertial frames of reference, which are defined up to a 
Lorentz transformation in relativity theory and up to a Galilean transformation in Newtonian 
mechanics, are of particularly great physical importance.. 

Formulas (6.5) and (6.8) correspond to a comoving reference frame with a metric of type 
(3.1) for local generaliy non-holonomically defined moving tetrads, considered in a Riemannian 
space. 

In a given space, the conversion of characteristics of motions from the comoving system 
to any other given reference system, considered in a general setting, is the central problem 
of the theory of inertial navigation*. (*SecIov L.I. and Tsypkin A.G., Elements of the 
Macroscopic Theories of Gravitation and Electromagnetism, Fizmatgiz, Moscow, 1989.) 

In this connection it should be emphasized that for a given individual point the tetrads 
ak and world lines L in the theory of continuous media, whether in the framework of Newtonian 
or relativistic mechanics, may be arbitrary. However, in view of the equation of continuity, 
one should note that in a fixed Riemannian space, allowance for possible transformations of 
the metric tensor components implies that the volume distribution of the tetrads a' and the 
family of world lines L cannot be arbitrary, because of the differential equations of con- 
tinuity, similar to the St. Venant equations in Newtonian mechanics and the Bianchi identities 
in general relativity. 

Previously we established a relationship between arc1 and the derivatives with respect 

to z of the observer's @a, (5, T). In applications a,,~ may be specified directly or sub]ect 

to determination, based on additional dynamic or kinematic arguments or in terms of the 
derivatives dg,iaZ, which in turn may be specified on the basis of equivalent mechanical 
reasoning about the given basis tetrads of the observer. 

The sequence of bases at (4 and e" fz) on L, which defines the observer's system, 
may be specified continuously and arbitrarily, it may refer to different Riemannian spaces. 

Obviously, if the components gcz4 vanish on the world lines L or depend there only on 
Ea, i.e., ga, (E")* then it follows from (6.5) that aabs = 0, and consequently the family of 
corresponding world lines 2, consists of geodesics, while if ga, = 8 the global metric (3.1) 
in finite volumes of space has a synchronous form: 

&$ _ @&' -j ~&%@ W) 

when the metric is synchronous, the family of comoving lines consists of geodesics, 
since as gW4 = 0 the absolute accelerations vanish on all the world lines. Nevertheless, 
even in this case we cannot generally call a global family of world lines L an inertial family, 
as we did for inertial families of global coordinate lines 5" = const in Cartesian systems 
in Euclidean or Minkowski space. The reason is that in the general case of Riemannian spaces 
the second term of (6.9) contains, in particular, a three-dimensional matrix with components 
&@ fE=, r), which cannot be diagonalized by a global transformation of the coordinates 
simultaneously at all points of the family of geodesic world lines L. 

Various aspects of the construction of global synchronous reference systems in Riemannian 
spaces will be discussed elsewhere. 

7. Generalization of the CorioZis fommcta to reZativisti4 spacetims modeZs in 1ocaZ 
theories of motion with accelerations, defomnations and rotations. In the local three-space 
C, at points on a world line L, take some point M and consider there three infinitesimal 
space vectors, related through the equality 

dr = dr, + dr, (7.1) 

and let dz be the element of global proper time on L at M, where all the increments dr, dr,, 

dr 2 
are three-vectors. In this situation the local value of dz is entirely analogous to 

the element of absolute time in Newtonian mechanics, but it is proper time in the framework 
of the comoving metric (3.1). After dividing (7.1) by dz and proceeding as in Newtonian 
mechanics, one obtains the appropriately named three-dimensional velocities: 

v&s = vtr + vrei (7.2) 

This equality will not hold if, instead of a uniform time with element dt one introduces 
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three proper times drabs, dzt,, &,,I. In the sequel, referring to absolute, translational and 

relative velocities we shall have in mind the velocity vectors occurring in Eq.17.2). 
Assuming (7.2) to be true, we can consider its corollary when the acclerations for dr,, and 

%* are defined in the same frame of reference, e.g., an inertial frame, whereas the 

acceleration for dr,l is defined in the observer's frame, which is frozen into the trans- 
lational frame (e.g., in a liquid medium). 

Thus, the absolute motion and translational motion of points may be defined relative to 
local inertial tetrads, while relative accelerations are defined in relation to the frozen 
tetrads of an observer moving along with the frozen tetrads of the reference frame, with 
allowance for accelerations, deformations and rotation of tetrads in translational motion. 
In classical Newtonian mechanics rigid bodies are almost automatically provided with a frozen 
translational frame of reference, and in that case one has the Coriolis formula. 

An analogous formula for deformed frames of reference in translational motion in the 
Newtonian and relativistic theories, which is rather more complicated in form, can be derived 
by analogous arguments; the derivation may be extended to both special and general relativity*_ 
(*More detailedderivationsin curvilinear coordinates have been published in Sedov L.I., On 
the addition of motions relative to deformed reference systems. Prikl. Mat. Mekh., 42, 1, 
175-177, 1978.) 

Below we reproduce some necessary conclusions following from formula (7.2): 

This formula also holds for accelerations relative to a non-inertial observer, provided 
that the bases a, are replaced by bases corresponding to the observer's tetrad. 

We now consider the different accelerations for a moving point M - the derivatives with 
respect to time z of the different velocity vectors introduced previously. 

The following derivation of the generalized Coriolis formula makes allowance for the 
arbitrary nature of translational motion, as in both Newtonian mechanics and (special and 
general) relativity theory. 

Based on the definitions of velocity introduced in Eq.(7.1), let us consider reference 
frames in a local three-dimensional volume C on the world line L, at neighbouring points M 
and M' on L, corresponding to times I and % + dr in the limit as dz-+ 0. 

The coordinate bases are defined as follows. 
1". The basic local system of the observer (inertial by its very nature) with coordinates 

fl and bases 9, = const and with velocity vabs = &/at, where z is proper time along L. 
20. A moving translational system, rotating and deforming, with coordinates ya and 

bases & which are variable with respect to a,, with velocity vtr = dr,/& in the coordinate 
system fia; the velocity vector has components utp in the ea bases and &a in the iia 
bases. 

3". Relative motion at velocity v,ei = &,I& = i%,, whose components may be considered 
both in the tetrad 0, with components iia in i, and in the tetrad an with components 

v,",,. When the accelerations are computed, the results may be expressed in terms of any 

bases and assumed to coincide at any specific instant of time. For each acceleration, however, 
one must take into consideration that the derivatives of the basis vectors with respect to r 
are different. For absolute acceleration in the basis a,, we write 

The relations 

yield the equality 

a,1 = &I& + 8%~,8!& 

which may be rewritten, after transforming the second term, in the bases sp as follows: 

a,elIs,=ronst = a+l;_onst + ua(V,utrp)3a 

(7.3) 

(7.4) 

(7.5) 
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Now, using (7.4), we can write 

(7.6) 

Differentiating (7.2) with respect to 2 from the viewpoint of an observer with basis 
err (assumed to be inertial), we find 

aabs =at,I~+=+)~~~ + arei f;a=const + ~~~~~~~~~~~8~ (7.7) 

Formula (7.7) is a generalization of the classical Coriolis formula, which is established 
to Newtonian mechanics and derived in Cartesian coordinate systems with orthonormal bases .e, 
and 3,. 

Formula (7.7) holds in both special and general relativity theory, in any curvilinear 
coordinates. 

If one uses the equality 

where ew are the components of the rate of strain and wag those of the rotation tensor in 
translational motion in the volume C, the generalized Coriolis formula (7.7) may be written 
as 

aahs =at, + are1 + 2&1(e, i w&e@ (7.8) 

where each term is represented in a tangible form. 
Formula (7.8) retains its form when the accelerations are considered relative to a non- 

inertial observer with basis 8,. 
Though based on the most elementary concepts of tensor analysis, the foregoing arguments 

provide a more general result in a more general situation, with practically no computations, 
at the same time demonstrating the reason for the appearance and nature of the "added" 
acceleration in formula (7.8). 

The motion of a moving point M is split up into absolute and relative motions owing to 
the introduction of reference frames of translational motion; such frames may be introduced 
holonomically, together with global time, or locally - and in general non-holonomically - for 
each position of the moving point M. 
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The stability of the state of equilibrium of a rigid body with a cavity 
partly or completely filled with a viscous incompressible liquid 
possessing surface tension is cosidered in a linear form. Lyapunov's 
direct method is used to show that the system is unstable if the second 
variation of the potential energy can take negative values. A priori 
lower and upper bounds for the solutions, when the perturbations are 
increased, are obtained. The lower bound guarantees exponential growth 
of the deviations of the solid and liquid particles from the equilibrium 
state. The upper bound shows that the solutions cannot increase at more 
than an exponential rate. In both cases the exponents are calculated 
from the parameters of the equilibrium state and the initial data for the 
perturbation fields. 


